Telegram Group & Telegram Channel
Forwarded from Machinelearning
🌟 PlayDiffusion: инпейнт для речи.

Те, кто работает с синтезом речи, знают, что авторегрессионные трансформерные модели, хоть и хороши для генерации речи из текста с нуля, но создают кучу проблем, когда нужно редактирование. Стандартные методы, в виде полной перегенерации предложения, обходятся дорого по ресурсам и часто приводят к изменению интонации или ритма.

Замена отдельного слова обычно оставляет неприятные «склейки» на границах, а перегенерация с середины фразы может испортить уже существующую часть. Все это бьет по естественности и связности звучания.

PlayAI выпустила PlayDiffusion 1.0 – диффузионную модель для редактирования речи, которая умеет изменять нужные участки аудио, сохраняя при этом общую гладкость и характеристики голоса. Причем модель пригодна как для реальной речи, так и для аудио, сгенерированного другими TTS-моделями.

В PlayDiffusion аудиопоток кодируется в дискретное пространство, превращаясь в более компактную последовательность токенов. Затем, тот сегмент, который требует модификации маскируется.

После этого задействуется сама диффузионная модель. Она, опираясь на обновленный текстовый контент, «восстанавливает» замаскированную область, убирая шум. На выходе последовательность токенов снова преобразуется в полноценный звук с помощью декодера BigVGAN.

Чтобы добиться таких результатов, PlayAI взяли за основу текстовую трансформерную архитектуру и внесли несколько ключевых модификаций:

🟢Во-первых, это некаузальное маскирование, позволяющее модели одновременно учитывать прошлые, настоящие и будущие токены, в отличие от стандартных GPT-подобных моделей.

🟢Во-вторых, используется кастомный BPE-токенизатор всего на 10 000 текстовых токенов, что резко сокращает размер таблицы эмбеддингов и ускоряет вычисления.

🟢В-третьих, модель учитывает характеристики диктора с помощью предобученной эмбеддинг-модели, которая преобразует аудиозаписи переменной длины в векторы фиксированного размера.

Интересно, что если замаскировать вообще всю аудиодорожку, PlayDiffusion может работать как TTS. В отличие от авторегрессионных моделей, которые генерируют каждый токен последовательно, опираясь на предыдущие, диффузионные модели генерят все токены одновременно, а затем уточняют их за фиксированное число шагов.

Например, для генерации 20 секунд аудио кодеком на 50 Гц авторегрессионной модели потребуется 1000 шагов. PlayDiffusion же способен выдать все 1000 токенов сразу и уточнить их всего за 20 итераций – это до 50 раз эффективнее по количеству шагов генерации.


📌Лицензирование: Apache 2.0 License.


🟡Статья
🟡Модель
🟡Demo
🖥GitHub


@ai_machinelearning_big_data

#AI #ML #TTS #Inpainting #PlayDiffusion #PlayAI
Please open Telegram to view this post
VIEW IN TELEGRAM



tg-me.com/machinelearning_interview/1830
Create:
Last Update:

🌟 PlayDiffusion: инпейнт для речи.

Те, кто работает с синтезом речи, знают, что авторегрессионные трансформерные модели, хоть и хороши для генерации речи из текста с нуля, но создают кучу проблем, когда нужно редактирование. Стандартные методы, в виде полной перегенерации предложения, обходятся дорого по ресурсам и часто приводят к изменению интонации или ритма.

Замена отдельного слова обычно оставляет неприятные «склейки» на границах, а перегенерация с середины фразы может испортить уже существующую часть. Все это бьет по естественности и связности звучания.

PlayAI выпустила PlayDiffusion 1.0 – диффузионную модель для редактирования речи, которая умеет изменять нужные участки аудио, сохраняя при этом общую гладкость и характеристики голоса. Причем модель пригодна как для реальной речи, так и для аудио, сгенерированного другими TTS-моделями.

В PlayDiffusion аудиопоток кодируется в дискретное пространство, превращаясь в более компактную последовательность токенов. Затем, тот сегмент, который требует модификации маскируется.

После этого задействуется сама диффузионная модель. Она, опираясь на обновленный текстовый контент, «восстанавливает» замаскированную область, убирая шум. На выходе последовательность токенов снова преобразуется в полноценный звук с помощью декодера BigVGAN.

Чтобы добиться таких результатов, PlayAI взяли за основу текстовую трансформерную архитектуру и внесли несколько ключевых модификаций:

🟢Во-первых, это некаузальное маскирование, позволяющее модели одновременно учитывать прошлые, настоящие и будущие токены, в отличие от стандартных GPT-подобных моделей.

🟢Во-вторых, используется кастомный BPE-токенизатор всего на 10 000 текстовых токенов, что резко сокращает размер таблицы эмбеддингов и ускоряет вычисления.

🟢В-третьих, модель учитывает характеристики диктора с помощью предобученной эмбеддинг-модели, которая преобразует аудиозаписи переменной длины в векторы фиксированного размера.

Интересно, что если замаскировать вообще всю аудиодорожку, PlayDiffusion может работать как TTS. В отличие от авторегрессионных моделей, которые генерируют каждый токен последовательно, опираясь на предыдущие, диффузионные модели генерят все токены одновременно, а затем уточняют их за фиксированное число шагов.

Например, для генерации 20 секунд аудио кодеком на 50 Гц авторегрессионной модели потребуется 1000 шагов. PlayDiffusion же способен выдать все 1000 токенов сразу и уточнить их всего за 20 итераций – это до 50 раз эффективнее по количеству шагов генерации.


📌Лицензирование: Apache 2.0 License.


🟡Статья
🟡Модель
🟡Demo
🖥GitHub


@ai_machinelearning_big_data

#AI #ML #TTS #Inpainting #PlayDiffusion #PlayAI

BY Machine learning Interview




Share with your friend now:
tg-me.com/machinelearning_interview/1830

View MORE
Open in Telegram


Machine learning Interview Telegram | DID YOU KNOW?

Date: |

Newly uncovered hack campaign in Telegram

The campaign, which security firm Check Point has named Rampant Kitten, comprises two main components, one for Windows and the other for Android. Rampant Kitten’s objective is to steal Telegram messages, passwords, and two-factor authentication codes sent by SMS and then also take screenshots and record sounds within earshot of an infected phone, the researchers said in a post published on Friday.

However, analysts are positive on the stock now. “We have seen a huge downside movement in the stock due to the central electricity regulatory commission’s (CERC) order that seems to be negative from 2014-15 onwards but we cannot take a linear negative view on the stock and further downside movement on the stock is unlikely. Currently stock is underpriced. Investors can bet on it for a longer horizon," said Vivek Gupta, director research at CapitalVia Global Research.

Machine learning Interview from jp


Telegram Machine learning Interview
FROM USA